- Series
- Dynamical Systems Working Seminar
- Time
- Tuesday, February 26, 2013 - 4:30pm for 1 hour (actually 50 minutes)
- Location
- Skiles 06
- Speaker
- F. Fenton – Georgia Tech (Physics)
- Organizer
- Rafael de la Llave
The heart is an electro-mechanical system in which, under normal
conditions, electrical waves propagate in a coordinated manner to initiate
an efficient contraction. In pathologic states, propagation can
destabilize and exhibit period-doubling bifurcations that can result in
both quasiperiodic and spatiotemporally chaotic oscillations. In turn,
these oscillations can lead to single or multiple rapidly rotating spiral
or scroll waves that generate complex spatiotemporal patterns of
activation that inhibit contraction and can be lethal if untreated.
Despite much study, little is known about the actual mechanisms that
initiate, perpetuate, and terminate reentrant waves in cardiac tissue.
In this talk, I will discuss experimental and theoretical approaches to
understanding the dynamics of cardiac arrhythmias. Then I will show how
state-of-the-art voltage-sensitive fluorescent dyes can be used to image
the electrical waves present in cardiac tissue, leading to new insights
about their underlying dynamics. I will establish a relationship between
the response of cardiac tissue to an electric field and the spatial
distribution of heterogeneities in the scale-free coronary vascular
structure. I will discuss how in response to a pulsed electric field E,
these heterogeneities serve as nucleation sites for the generation of
intramural electrical waves with a source density ?(E) and a
characteristic time constant ? for tissue excitation that obeys a power
law. These intramural wave sources permit targeting of electrical
turbulence near the cores of the vortices of electrical activity that
drive complex fibrillatory dynamics. Therefore, rapid synchronization of
cardiac tissue and termination of fibrillation can be achieved with a
series of low-energy pulses. I will finish with results showing the efficacy and clinical application of this novel low energy mechanism in
vitro and in vivo. e