Inducibility of graphs and tournaments

Series
Graph Theory Seminar
Time
Tuesday, October 6, 2020 - 3:45pm for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Florian Pfender – University of Colorado Denver – Florian.Pfender@ucdenver.eduhttp://math.ucdenver.edu/~fpfender/
Organizer
Anton Bernshteyn

A classical question in extremal graph theory asks to maximize the number of induced copies of a given graph or tournament in a large host graph, often expressed as a density. A simple averaging argument shows that the limit of this density exists as the host graph is allowed to grow. Razborov's flag algebra method is well suited to generate bounds on these quantities with the help of semidefinite programming. We will explore this method for a few small examples, and see how to modify it to fit our questions. The extremal graphs show some beautiful structures, sometimes fractal like, sometimes quasi random and sometimes even a combination of both.