Long-time dynamics of dispersive equations

Series
Research Horizons Seminar
Time
Wednesday, November 2, 2022 - 12:30pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gong Chen – Georgia Institute of Technology – gc@math.gatech.eduhttps://sites.google.com/site/cg66math/home
Organizer
Christopher DuPre

Through the pioneering numerical computations of Fermi-Pasta-Ulam (mid 50s) and Kruskal-Zabusky (mid 60s) it was observed that nonlinear equations modeling wave propagation asymptotically decompose as a superposition of “traveling waves” and “radiation”. Since then, it has been a widely believed (and supported by extensive numerics) that “coherent structures” together with radiations describe the long-time asymptotic behavior of generic solutions to nonlinear dispersive equations. This belief has come to be known as the “soliton resolution conjecture”.  Roughly speaking it tells that, asymptotically in time, the evolution of generic solutions decouples as a sum of modulated solitary waves and a radiation term that disperses. This remarkable claim establishes a drastic “simplification” to the complex, long-time dynamics of general solutions. It remains an open problem to rigorously show such a description for most dispersive equations.  After an informal introduction to dispersive equations, I will illustrate how to understand the long-time behavior solutions to dispersive waves via various results I obtained over the years.