Polynomials with Lorentzian Signature over Cones, and Perron-Frobenius Theorem

Series
Algebra Seminar
Time
Monday, January 29, 2024 - 1:00pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Papri Dey – Georgia Tech
Organizer
Changxin Ding

Please Note: There is no pre-seminar this time.

 The classical theorems of Perron and Frobenius, which explore spectral properties of nonnegative matrices, have been extensively examined and generalized from various perspectives, including a cone-theoretic (geometric) viewpoint. Concurrently, in the past decade, there has been a notable effort to fuse the techniques of algebraic geometry and combinatorics in an exploration of Lorentzian polynomials by Brändén and Huh, also known as completely log-concave polynomials (CLC) by Anari et.al. or strongly log-concave polynomials by Gurvits.

 

In this talk, I will discuss my ongoing joint work with Greg Blekherman regarding the class of polynomials with Lorentzian signature (PLS) defined over closed convex cones. This class encompasses various special polynomials, including Lorentzian polynomials over the nonnegative orthant and hyperbolic polynomials over hyperbolicity cones. We establish a compelling connection between PLS over a self-dual cone K and the generalized Perron Frobenius theorem over K. This connection enables us to provide an alternative necessary and sufficient condition to characterize the Lorentzian polynomials.