- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, January 27, 2025 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005 and https://gatech.zoom.us/j/94954654170
- Speaker
- Lu Lu – Yale University – lu.lu@yale.edu – https://lugroup.yale.edu/people/
- Organizer
- Wenjing Liao
As an emerging paradigm in scientific machine learning, deep neural operators pioneered by us can learn nonlinear operators of complex dynamic systems via neural networks. In this talk, I will present the deep operator network (DeepONet) to learn various operators that represent deterministic and stochastic differential equations. I will also present several extensions of DeepONet, such as DeepM&Mnet for multiphysics problems, DeepONet with proper orthogonal decomposition or Fourier decoder layers, MIONet for multiple-input operators, and multifidelity DeepONet. I will demonstrate the effectiveness of DeepONet and its extensions to diverse multiphysics and multiscale problems, such as bubble growth dynamics, high-speed boundary layers, electroconvection, hypersonics, geological carbon sequestration, full waveform inversion, and astrophysics. Deep learning models are usually limited to interpolation scenarios, and I will quantify the extrapolation complexity and develop a complete workflow to address the challenge of extrapolation for deep neural operators. Moreover, I will present the first operator learning method that only requires one PDE solution, i.e., one-shot learning, by introducing a new concept of local solution operator based on the principle of locality of PDEs. I will also present the first systematic study of federated scientific machine learning (FedSciML) for approximating functions and solving PDEs with data heterogeneity.