- You are here:
- Home

Archived:

## Probability and Statistics with Applications

Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance.

MATH 3215, MATH 3235, and MATH 3670 are mutually exclusive; students may not hold credit for more than one of these courses.

## A Second Course on Linear Algebra

This course will cover important topics in linear algebra not usually discussed in a first-semester course, featuring a mixture of theory and applications.

## Introduction to Discrete Mathematics

Mathematical logic and proof, mathematical induction, counting methods, recurrence relations, algorithms and complexity, graph theory and graph algorithms.

## Classical Mathematical Methods in Engineering

Fourier series, Fourier integrals, boundary value problems for partial differential equations, eigenvalue problems

## Analysis I

Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, Fourier series

## Topics in Linear Algebra

Linear algebra in R^n, standard Euclidean inner product in R^n, general linear spaces, general inner product spaces, least squares, determinants, eigenvalues and eigenvectors, symmetric matrices.

## Introduction to Probability and Statistics

This course is a problem oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.

MATH 3215, MATH 3235, and MATH 3670 are mutually exclusive; students may not hold credit for more than one of these courses.

## Applied Combinatorics

Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs.

## Math Methods of Applied Sciences I

Review of linear algebra and ordinary differential equations, brief introduction to functions of a complex variable.

## Survey of Calculus

Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.