## Undergraduate Research

Independent research conducted under the guidance of a faculty member.

## Probability and Statistics with Applications

Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance.

## A Second Course on Linear Algebra

This course will cover important topics in linear algebra not usually discussed in a first-semester course, featuring a mixture of theory and applications.

## Introduction to Discrete Mathematics

Mathematical logic and proof, mathematical induction, counting methods, recurrence relations, algorithms and complexity, graph theory and graph algorithms.

## Classical Mathematical Methods in Engineering

Fourier series, Fourier integrals, boundary value problems for partial differential equations, eigenvalue problems

## Analysis I

Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, Fourier series

## Topics in Linear Algebra

Linear algebra in R^n, standard Euclidean inner product in R^n, general linear spaces, general inner product spaces, least squares, determinants, eigenvalues and eigenvectors, symmetric matrices.

## Introduction to Probability and Statistics

This course is a problem oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.

## Applied Combinatorics

Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs.

## Math Methods of Applied Sciences I

Review of linear algebra and ordinary differential equations, brief introduction to functions of a complex variable.