Seminars and Colloquia by Series

Existence of contact structures in 3-manifolds

Series
Geometry Topology Student Seminar
Time
Wednesday, November 14, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyunki MinGeorgia Tech
Unlike symplectic structures in 4-manioflds, contact structures are abundant in 3-dimension. Martinet showed that there exists a contact structure on any closed oriented 3-manifold. After that Lutz showed that there exist a contact structure in each homotopy class of plane fields. In this talk, we will review the theorems of Lutz and Martinet.

Boothby Wang Fibrations, K-Contact Structures and Regularity

Series
Geometry Topology Student Seminar
Time
Wednesday, October 24, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Surena HozooriGeorgia Institute of Technology
Boothby Wang fibrations are historically important examples of contact manifolds and it turns out that we can equip these contact manifolds with extra structures, namely K-contact structures. Based on the study of the relation of these examples and the regularity properties of the corresponding Reeb vector fields, works of Boothby, Wang, Thomas and Rukimbira gives a classification of K-contact structures.

Introduction to h-principle

Series
Geometry Topology Student Seminar
Time
Wednesday, October 10, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sudipta KolayGeorgia Tech
This talk will be an introduction to the homotopy principle (h-principle). We will discuss several examples. No prior knowledge about h-principle will be assumed.

A1-enumerative geometry

Series
Geometry Topology Student Seminar
Time
Wednesday, October 3, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Stephen MckeanGaTech
Many problems in algebraic geometry involve counting solutions to geometric problems. The number of intersection points of two projective planar curves and the number of lines on a cubic surface are two classical problems in this enumerative geometry. Using A1-homotopy theory, one can gain new insights to old enumerative problems. We will outline some results in A1-enumerative geometry, including the speaker’s current work on Bézout’s Theorem.

A discussion about the smooth Schoenflies' conjecture

Series
Geometry Topology Student Seminar
Time
Wednesday, September 26, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Agniva RoyGeorgia Tech
The Schoenflies' conjecture proposes the following: An embedding of the n-sphere in the (n+1)-sphere bounds a standard (n+1)-ball. For n=1, this is the well known Jordan curve theorem. Depending on the type of embeddings, one has smooth and topological versions of the conjecture. The topological version was settled in 1960 by Brown. In the smooth setting, the answer is known to be yes for all dimensions other than 4, where apart from one special case, nothing is known. The talk will review the question and attempt to describe some of the techniques that have been used in low dimensions, especially in the special case, that was worked out by Scharlemann in the 1980s. There are interesting connections to the smooth 4-dimensional Poincare conjecture that will be mentioned, time permitting. The talk is aimed to be expository and not technical.

Sphere eversion: From Smale to Gromov II

Series
Geometry Topology Student Seminar
Time
Wednesday, September 19, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyunki MinGeorgia Tech
In 1957, Smale proved a striking result: we can turn a sphere inside out without any singularity. Gromov in his thesis, proved a generalized version of this theorem, which had been the starting point of the h-principle. In this talk, we will prove Gromov's theorem and see applications of it.

Sphere eversion: From Smale to Gromov I

Series
Geometry Topology Student Seminar
Time
Wednesday, September 12, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyunki MinGeorgia Tech
In 1957, Smale proved a striking result: we can turn a sphere inside out without any singularity. Gromov in his thesis, proved a generalized version of this theorem, which had been the starting point of the h-principle. In this talk, we will prove Gromov's theorem and see applications of it.

Introduction to jet bundle and Whitney embedding theorem

Series
Geometry Topology Student Seminar
Time
Wednesday, September 5, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anubhav MukherjeeGaTech
This is the second lecture of the series on h-principle. We will introduce jet bundle and it's various properties. This played a big role in the devloping modern geometry and topology. And using this we will prove Whitney embedding theorem. Only basic knowledge of calculus is required.

Whitney–Graustein theorem

Series
Geometry Topology Student Seminar
Time
Wednesday, August 22, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sudipta KolayGeorgia Tech

Please Note: This theorem is one of earliest instance of the h-principle, and there will be a series of talks on it this semester.

The Whitney-Graustein theorem classifies immersions of the circle in the plane by their turning number. In this talk, I will describe a proof of this theorem, as well as a related result due to Hopf.

The Dehn-Nielsen-Baer Theorem

Series
Geometry Topology Student Seminar
Time
Wednesday, April 18, 2018 - 14:10 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sarah DavisGaTech
The theorem of Dehn-Nielsen-Baer says the extended mapping class group is isomorphic to the outer automorphism group of the fundamental group of a surface. This theorem is a beautiful example of the interconnection between purely topological and purely algebraic concepts. This talk will discuss the background of the theorem and give a sketch of the proof.

Pages