Seminars and Colloquia by Series

The Jones polynomial and quantum invariants

Series
Geometry Topology Working Seminar
Time
Friday, April 17, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Thang LeSchool of Mathematics, Georgia Tech

Please Note: These are two hour lectures.

We will develop general theory of quantum invariants based on sl_2 (the simplest Lie algebra): The Jones polynomials, the colored Jones polynomials, quantum sl_2 groups, operator invariants of tangles, and relations with the Alexander polynomial and the A-polynomials. Optional: Finite type invariants and the Kontsevich integral.

The Jones polynomial and quantum invariants

Series
Geometry Topology Working Seminar
Time
Friday, April 10, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Thang LeSchool of Mathematics, Georgia Tech

Please Note: These are two hour talks.

We will develop general theory of quantum invariants based on sl_2 (the simplest Lie algebra): The Jones polynomials, the colored Jones polynomials, quantum sl_2 groups, operator invariants of tangles, and relations with the Alexander polynomial and the A-polynomials. Optional: Finite type invariants and the Kontsevich integral.

Introduction to metric and comparison geometry

Series
Geometry Topology Working Seminar
Time
Friday, February 27, 2009 - 15:05 for 2.5 hours
Location
Skiles 269
Speaker
Igor BelegradekGa Tech
Comparison geometry studies Riemannian manifolds with a given curvature bound. This minicourse is an introduction to volume comparison (as developed by Bishop and Gromov), which is fundamental in understanding manifolds with a lower bound on Ricci curvature. Prerequisites are very modest: we only need basics of Riemannian geometry, and fluency with fundamental groups and metric spaces. In the third (2 hour) lecture I shall prove volume and Laplacian comparison theorems.

Introduction to metric and comparison geometry

Series
Geometry Topology Working Seminar
Time
Friday, February 20, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Igor BelegradekGa Tech
Comparison geometry studies Riemannian manifolds with a given curvature bound. This minicourse is an introduction to volume comparison (as developed by Bishop and Gromov), which is fundamental in understanding manifolds with a lower bound on Ricci curvature. Prerequisites are very modest: we only need basics of Riemannian geometry, and fluency with fundamental groups and metric spaces. The second (2 hour) lecture is about Gromov-Hausdorff convergence, which provides a natural framework to studying degenerations of Riemannian metrics.

Introduction to metric and comparison geometry

Series
Geometry Topology Working Seminar
Time
Friday, February 13, 2009 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Igor BelegradekSchool of Mathematics, Georgia Tech
Comparison geometry studies Riemannian manifolds with a given curvature bound.  This minicourse is an introduction to volume comparison (as developed by Bishop and Gromov), which is fundamental in understanding manifolds with a lower bound on Ricci curvature. Prerequisites are very modest: we only need basics of Riemannian geometry, and fluency with fundamental groups and metric spaces. In the first (2 hour) lecture I shall explain what volume comparison is and derive several applications.

Introduction to the h-principle

Series
Geometry Topology Working Seminar
Time
Friday, February 6, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Mohammad GhomiSchool of Mathematics, Georgia Tech

Please Note: (Please note this course runs from 3-5 pm.)

h-Principle consists of a powerful collection of tools developed by Gromov and others to solve underdetermined partial differential equations or relations which arise in differential geometry and topology. In these talks I will describe the Holonomic approximation theorem of Eliashberg-Mishachev, and discuss some of its applications including the sphere eversion theorem of Smale. Further I will discuss the method of convex integration and its application to proving the C^1 isometric embedding theorem of Nash.

Introduction to the h-principle

Series
Geometry Topology Working Seminar
Time
Friday, January 30, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Mohammad GhomiGa Tech
$h$-Principle consists of a powerful collection of tools developed by Gromov and others to solve underdetermined partial differential equations or relations which arise in differential geometry and topology. In these talks I will describe the Holonomic approximation theorem of Eliashberg-Mishachev, and discuss some of its applications including the sphere eversion theorem of Smale. Further I will discuss the method of convex integration and its application to proving the $C^1$ isometric embedding theorem of Nash. (Please note this course runs from 3-5.)

Introduction to the h-principle

Series
Geometry Topology Working Seminar
Time
Friday, January 23, 2009 - 15:00 for 2 hours
Location
Skiles 269
Speaker
Mohammad GhomiGa Tech
$h$-Principle consists of a powerful collection of tools developed by Gromov and others to solve underdetermined partial differential equations or relations which arise in differential geometry and topology. In these talks I will describe the Holonomic approximation theorem of Eliashberg-Mishachev, and discuss some of its applications including the sphere eversion theorem of Smale. Further I will discuss the method of convex integration and its application to proving the $C^1$ isometric embedding theorem of Nash.

Hyperbolic volume and torsions of 3-manifolds

Series
Geometry Topology Working Seminar
Time
Friday, November 14, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Thang LeSchool of Mathematics, Georgia Tech
We will explain the famous result of Luck and Schick which says that for a large class of 3-manifolds, including all knot complements, the hyperbolic volume is equal to the l^2-torsion. Then we speculate about the growth of homology torsions of finite covers of knot complements. The talk will be elementary and should be accessible to those interested in geometry/topology.

On Sections of genus two Lefschetz fibrations

Series
Geometry Topology Working Seminar
Time
Friday, October 31, 2008 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Sinem Celik OnaranSchool of Mathematics, Georgia Tech
It is still not known whether every genus g Lefschetz fibration over the 2-sphere admits a section or not. In this talk, we will give a brief background information on Lefschetz fibrations and talk about sections of genus two Lefschetz fibration. We will observe that any holomorphic genus two Lefschetz fibration without seperating singular fibers admits a section. This talk is accessible to anyone interested in topology and geometry.

Pages