Seminars and Colloquia by Series

Induction for 4-connected Matroids and Graphs (Xiangqian Joseph Zhou, Wright State University)

Series
Graph Theory Seminar
Time
Tuesday, July 23, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Xiangqian Joseph ZhouWright State University

A matroid $M$ is a pair $(E, \mathcal{I})$ where $E$ is a finite set, called the {\em ground set} of $M$, and $\mathcal{I}$ is a non-empty collection of subsets of $E$, called {\em independent sets} of $M$, such that (1) a subset of an independent set is independent; and (2) if $I$ and $J$ are independent sets with $|I| < |J|$, then exists $x \in J \backslash I$ such that $I \cup \{x\}$ is independent. 

A graph $G$ gives rise to a matroid $M(G)$ where the ground set is $E(G)$ and a subset of $E(G)$ is independent if it spans a forest. Another example is a matroid that comes from a matrix over a field $F$: the ground set $E$ is the set of all columns and a subset of $E$ is independent if it is linearly independent over $F$. 

Tutte's Wheel and Whirl Theorem and Seymour's Splitter Theorem are two well-known inductive tools for proving results for 3-connected graphs and matroids. In this talk, we will give a survey on induction theorems for various versions of 4-connected matroids and graphs.   
 

Conflict-free hypergraph matchings and generalized Ramsey numbers (Emily Heath, Iowa State University)

Series
Graph Theory Seminar
Time
Tuesday, April 16, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Emily HeathIowa State University

Given graphs G and H and a positive integer q, an (H,q)-coloring of G is an edge-coloring in which each copy of H receives at least q colors. Erdős and Shelah raised the question of determining the minimum number of colors, f(G,H,q), which are required for an (H,q)-coloring of G. Determining f(K_n,K_p,2) for all n and p is equivalent to determining the classical multicolor Ramsey numbers. Recently, Mubayi and Joos introduced the use of a new method for proving upper bounds on these generalized Ramsey numbers; by finding a “conflict-free" matching in an appropriate auxiliary hypergraph, they determined the values of f(K_{n,n},C_4,3) and f(K_n,K_4,5). In this talk, we will show how to generalize their approach to give bounds on the generalized Ramsey numbers for several families of graphs. This is joint work with Deepak Bal, Patrick Bennett, and Shira Zerbib.

On tight $(k, \ell)$-stable graphs

Series
Graph Theory Seminar
Time
Tuesday, April 9, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zixia SongUniversity of Central Florida

For integers $k>\ell\ge0$, a graph $G$ is $(k,\ell)$-stable if  $\alpha(G-S)\geq \alpha(G)-\ell$ for every    
$S\subseteq V(G)$ with $|S|=k$. A recent result of Dong and Wu [SIAM J.
Discrete Math. 36 (2022) 229--240] shows that every $(k,\ell)$-stable 
graph $G$  satisfies $\alpha(G) \le  \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell$.  A $(k,\ell)$-stable graph $G$   is   tight if $\alpha(G) = \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell$; and  $q$-tight for some integer $q\ge0$ if $\alpha(G) = \lfloor ({|V(G)|-k+1})/{2}\rfloor+\ell-q$.
In this talk, we first prove  that for all $k\geq 24$, the only tight $(k, 0)$-stable graphs are $K_{k+1}$ and  $K_{k+2}$, answering a question of Dong and Luo [arXiv: 2401.16639]. We then prove that  for all nonnegative integers $k, \ell, q$ with $k\geq 3\ell+3$, every $q$-tight $(k,\ell)$-stable graph has at most  $k-3\ell-3+2^{3(\ell+2q+4)^2}$ vertices, answering a question of Dong and Luo in the negative.   \\  

This is joint work with Xiaonan Liu and Zhiyu Wang. 

Spectrahedral Geometry of Graph Sparsifiers (Catherine Babecki, Caltech)

Series
Graph Theory Seminar
Time
Tuesday, April 2, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Speaker
Catherine BabeckiCalifornia Institute of Technology
We propose an approach to graph sparsification based on the idea of preserving the smallest k eigenvalues and eigenvectors of the Graph Laplacian. This is motivated by the fact that small eigenvalues and their associated eigenvectors tend to be more informative of the global structure and geometry of the graph than larger eigenvalues and their eigenvectors. The set of all weighted subgraphs of a graph G that have the same first k eigenvalues (and eigenvectors) as G is the intersection of a polyhedron with a cone of positive semidefinite matrices. We discuss the geometry of these sets and deduce the natural scale of k. Various families of graphs illustrate our construction.

Matroids on graphs (Daniel Bernstein, Tulane)

Series
Graph Theory Seminar
Time
Tuesday, March 26, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BernsteinTulane University

Many problems in rigidity theory and matrix completion boil down to finding a nice combinatorial description of some matroid supported on the edge set of a complete (bipartite) graph. In this talk, I will give many such examples. My goal is to convince you that a general theory of matroids supported on graphs is needed and to give you a sense of what that could look like.

ε-series by Corrine Yap, Jing Yu, and Changxin Ding

Series
Graph Theory Seminar
Time
Friday, March 8, 2024 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 308
Speaker
Corrine Yap, Jing Yu, and Changxin DingGeorgia Tech

Corrine Yap:  The Ising model is a classical model originating in statistical physics; combinatorially it can be viewed as a probability distribution over 2-vertex-colorings of a graph. We will discuss a fixed-magnetization version—akin to fixing the number of, say, blue vertices in every coloring—and a natural Markov chain sampling algorithm called the Kawasaki dynamics. We show some surprising results regarding the existence and location of a fast/slow mixing threshold for these dynamics. (joint work with Aiya Kuchukova, Marcus Pappik, and Will Perkins)


Changxin Ding: For trees on a fixed number of vertices, the path and the star are two extreme cases. Many graph parameters attain its maximum at the star and its minimum at the path among these trees. A trivial example is the number of leaves. I will introduce more interesting examples in the mini talk.

Jing Yu: We show that all simple outerplanar graphs G with minimum degree at least 2 and positive Lin-Lu-Yau Ricci curvature on every edge have maximum degree at most 9. Furthermore, if G is maximally outerplanar, then G has at most 10 vertices. Both upper bounds are sharp.

Slow subgraph bootstrap percolation (Tibor Szabó, Freie Universität Berlin)

Series
Graph Theory Seminar
Time
Tuesday, March 5, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tibor SzabóFreie Universität Berlin

 For a graph $H$ and an $n$-vertex graph $G$, the $H$-bootstrap percolation process on $G$ is the process which starts with $G$ and, at every time step, adds any missing edges on the vertices of $G$ that complete a copy of $H$. This process eventually stabilises and we are interested in the extremal question raised by Bollob\'as, of determining the maximum \emph{running time} (number of time steps before stabilising) of this process, over all possible choices of $n$-vertex graph $G$. We initiate a systematic study of this parameter, denoted $M_H(n)$, and its dependence on properties of the graph $H$. In a series of works we determine the precise running time for cycles and asymptotic running time for several other important classes. In general, we study necessary and sufficient conditions on $H$ for fast, i.e. sublinear or linear $H$-bootstrap percolation, and in particular explore the relationship between running time and minimum vertex degree and connectivity. Furthermore we also obtain the running time of the process for typical $H$ and discover several graphs exhibiting surprising behavior.  The talk represents joint work with David Fabian and Patrick Morris.

Recent advances on extremal problems of k-critical graphs (Jie Ma, University of Science and Technology of China)

Series
Graph Theory Seminar
Time
Tuesday, February 27, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jie MaUniversity of Science and Technology of China

 A graph is called k-critical if its chromatic number is k but any proper subgraph has chromatic number less than k. There have been extensive reseaches on k-critical graphs over the past decades, yet several basic problems remain widely open. One of such problems is to determine the maximum number of edges in an n-vertex k-critical graph. In this talk, we will discuss some recent results on extremal aspects of k-critical graphs, including improvments on the extremal number of edges/cliques/critical subgraphs in k-critical graphs.  This is based on some joint works with Jun Gao, Cong Luo and Tianchi Yang. 

Thresholds for random Ramsey problems (Joseph Hyde (UVic))

Series
Graph Theory Seminar
Time
Tuesday, February 20, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joseph HydeUniversity of Victoria

 The study of Ramsey properties of the binomial random graph G_{n,p} was initiated in the 80s by Frankl & Rödl and Łuczak, Ruciński & Voigt. In this area we are often interested in establishing what function f(n) governs G_{n,p} having a particular Ramsey-like property P or not, i.e. when p is sufficiently larger than f(n) then G_{n,p} a.a.s. has P and when p is sufficiently smaller than f(n) then G_{n,p} a.a.s. does not have P (the former we call a 1-statement, the latter a 0-statement). I will present recent results on this topic from two different papers.

In the first, we almost completely resolve an outstanding conjecture of Kohayakawa and Kreuter on asymmetric Ramsey properties. In particular, we reduce the 0-statement to a necessary colouring problem which we solve for almost all pairs of graphs. Joint work with Candy Bowtell and Robert Hancock.

In the second, we prove similar results concerning so-called anti- and constrained-Ramsey properties. In particular, we (essentially) completely resolve the outstanding parts of the problem of determining the threshold function for the constrained-Ramsey property, and we reduce the anti-Ramsey problem to a necessary colouring problem which we prove for a specific collection of graphs. Joint work with Natalie Behague, Robert Hancock, Shoham Letzter and Natasha Morrison.

Combinatoric derivations in extremal graph theory and Sidorenko's conjecture (Daniel Brosch, University of Klagenfurt)

Series
Graph Theory Seminar
Time
Tuesday, February 13, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BroschUniversity of Klagenfurt

Sidorenko's conjecture can be formulated as "Let $H$ be a bipartite graph, and $\rho\in [0,1]$. Of all the graphs with edge density $\rho$, the graph(-limit) obtained by picking edges uniformly at random minimizes the homomorphism density of $H$." This conjecture, first formulated in 1991 by Sidorenko, has received considerable attention over the last decades, and yet remains open in the general case.
 
It was shown recently [Blekherman, Raymond, Singh, Thomas, 2020] that sums-of-squares in Razborov's flag algebra are not strong enough to prove even small, known cases of the conjecture. To circumvent this, we introduce a novel kind of derivation of flags. Due to their combinatoric nature, we can use them to systematically gain knowledge on global minimizers of problems in extremal graph theory. We combine them with the flag algebra method to find new proofs for various cases of Sidorenko's conjecture. 

Pages