Seminars and Colloquia by Series

Coloring hypergraphs of small codegree, and a proof of the Erdős–Faber–Lovász conjecture

Series
Job Candidate Talk
Time
Thursday, January 20, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Thomas KellyUniversity of Birmingham

Meeting link: https://bluejeans.com/961048334/8189

A long-standing problem in the field of graph coloring is the Erdős–Faber–Lovász conjecture (posed in 1972), which states that the chromatic index of any linear hypergraph on $n$ vertices is at most $n$, or equivalently, that a nearly disjoint union of $n$ complete graphs on at most $n$ vertices has chromatic number at most $n$.  In joint work with Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk Osthus, we proved this conjecture for every sufficiently large $n$.  Recently, we also solved a related problem of Erdős from 1977 on the chromatic index of hypergraphs of small codegree.  In this talk, I will survey the history behind these results and discuss some aspects of the proofs.

Long-time dynamics of dispersive equations

Series
Job Candidate Talk
Time
Tuesday, January 18, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Gong ChenUniversity of Toronto

Please Note: https://bluejeans.com/910698769/4854

Through the pioneering numerical computations of Fermi-Pasta-Ulam (mid 50s) and Kruskal-Zabusky (mid 60s) it was observed that nonlinear equations modeling wave propagation asymptotically decompose as a superposition of “traveling waves” and “radiation”. Since then, it has been a widely believed (and supported by extensive numerics) that “coherent structures” together with radiations describe the long-time asymptotic behavior of generic solutions to nonlinear dispersive equations. This belief has come to be known as the “soliton resolution conjecture”.  Roughly speaking it tells that, asymptotically in time, the evolution of generic solutions decouples as a sum of modulated solitary waves and a radiation term that disperses. This remarkable claim establishes a drastic “simplification” to the complex, long-time dynamics of general solutions. It remains an open problem to rigorously show such a description for most dispersive equations.  After an informal introduction to dispersive equations, I will survey some of my recent results towards understanding the long-time behavior of dispersive waves and the soliton resolution using techniques from both partial differential equations and inverse scattering transforms.

Turbulent Weak Solutions of the 3D Euler Equations

Series
Job Candidate Talk
Time
Thursday, January 13, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Matthew NovackIAS

Meeting link: https://bluejeans.com/912860268/9947

The Navier-Stokes and Euler equations are the fundamental models for describing viscous and inviscid fluids, respectively. Based on ideas which date back to Kolmogorov and Onsager, solutions to these equations are expected to dissipate energy, which in turn suggests that such solutions are somewhat rough and thus only weak solutions. At these low regularity levels, however, one may construct wild weak solutions using convex integration methods. In this talk, I will discuss the motivation and methodology behind joint work with Tristan Buckmaster, Nader Masmoudi, and Vlad Vicol in which we construct wild solutions to the Euler equations which deviate from the predictions of Kolmogorov's classical K41 phenomenological theory of turbulence.

Thresholds

Series
Job Candidate Talk
Time
Wednesday, December 15, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/487699041/8823
Speaker
Jinyoung ParkStanford University

Thresholds for increasing properties of random structures are a central concern in probabilistic combinatorics and related areas. In 2006, Kahn and Kalai conjectured that for any nontrivial increasing property on a finite set, its threshold is never far from its "expectation-threshold," which is a natural (and often easy to calculate) lower bound on the threshold. In this talk, I will first introduce the Kahn-Kalai Conjecture with some motivating examples and then talk about the recent resolution of a fractional version of the Kahn-Kalai Conjecture due to Frankston, Kahn, Narayanan, and myself. Some follow-up work, along with open questions, will also be discussed.

Regularity lemma: discrete and continuous perspectives

Series
Job Candidate Talk
Time
Monday, December 13, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/774516207/3993
Speaker
Fan WeiPrinceton University

Szemerédi's regularity lemma is a game-changer in extremal combinatorics and provides a global perspective to study large combinatorial objects. It has connections to number theory, discrete geometry, and theoretical computer science. One of its classical applications, the removal lemma, is the essence for many property testing problems, an active field in theoretical computer science. Unfortunately, the bound on the sample size from the regularity method typically is either not explicit or enormous. For testing natural permutation properties, we show one can avoid the regularity proof and yield a tester with polynomial sample size. For graphs, we prove a stronger, "L_\infty'' version of the graph removal lemma, where we conjecture that the essence of this new removal lemma for cliques is indeed the regularity-type proof. The analytic interpretation of the regularity lemma also plays an important role in graph limits, a recently developed powerful theory in studying graphs from a continuous perspective. Based on graph limits, we developed a method combining with both analytic and spectral methods, to answer and make advances towards some famous conjectures on a common theme in extremal combinatorics: when does randomness give nearly optimal bounds? 

These works are based on joint works with Jacob Fox, Dan Kral',  Jonathan Noel, Sergey Norin, and Jan Volec.

 

Canonical measures and equidistribution in the arithmetic of forward orbits

Series
Job Candidate Talk
Time
Thursday, December 9, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
online
Speaker
Nicole LooperBrown University

This talk is about the arithmetic of points of small canonical height relative to dynamical systems over number fields, particularly those aspects amenable to the use of equidistribution techniques. Past milestones in the subject include the proof of the Bogomolov Conjecture given by Ullmo and Zhang, and Baker-DeMarco's work on the finiteness of common preperiodic points of unicritical maps. Recently, quantitative equidistribution techniques have emerged both as a way of improving upon some of these old results, and as an avenue to studying previously inaccessible problems, such as the Uniform Boundedness Conjecture of Morton and Silverman. I will describe the key ideas behind these developments, and raise related questions for future research. 

https://bluejeans.com/788895268/8348

Inverse Problems, Imaging and Tensor Decomposition

Series
Job Candidate Talk
Time
Tuesday, March 3, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joe KileelProgram in Applied and Computational Mathematics, Princeton University

Perspectives from numerical optimization and computational algebra are  
brought to bear on a scientific application and a data science  
application.  In the first part of the talk, I will discuss  
cryo-electron microscopy (cryo-EM), an imaging technique to determine  
the 3-D shape of macromolecules from many noisy 2-D projections,  
recognized by the 2017 Chemistry Nobel Prize.  Mathematically, cryo-EM  
presents a particularly rich inverse problem, with unknown  
orientations, extreme noise, big data and conformational  
heterogeneity. In particular, this motivates a general framework for  
statistical estimation under compact group actions, connecting  
information theory and group invariant theory.  In the second part of  
the talk, I will discuss tensor rank decomposition, a higher-order  
variant of PCA broadly applicable in data science.  A fast algorithm  
is introduced and analyzed, combining ideas of Sylvester and the power  
method.

Large stochastic systems of interacting particles

Series
Job Candidate Talk
Time
Thursday, February 20, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Pierre-Emmanuel JabinUniversity of Maryland, College Park

I will present some recent results, obtained with D. Bresch and Z. Wang, on large stochastic many-particle or multi-agent systems. Because such systems are conceptually simple but exhibit a wide range of emerging macroscopic behaviors, they are now employed in a large variety of applications from Physics (plasmas, galaxy formation...) to the Biosciences, Economy, Social Sciences...

The number of agents or particles is typically quite large, with 10^20-10^25 particles in many Physics settings for example and just as many equations. Analytical or numerical studies of such systems are potentially very complex  leading to the key question as to whether it is possible to reduce this complexity, notably thanks to the notion of propagation of chaos (agents remaining almost uncorrelated).

To derive this propagation of chaos, we have introduced a novel analytical method, which led to the resolution of two long-standing conjectures:
        _The quantitative derivation of the 2-dimensional incompressible Navier-Stokes system from the point vortices dynamics;
       _The derivation of the mean-field limit for attractive singular interactions such as in the Keller-Segel model for chemotaxis and some Coulomb gases.

Descriptive combinatorics and the probabilistic method

Series
Job Candidate Talk
Time
Tuesday, February 18, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anton BernshteynCarnegie Mellon University (CMU)

Descriptive combinatorics studies the interaction between classical combinatorial concepts, such as graph colorings and matchings, and notions from measure theory and topology. Results in this area enable one to apply combinatorial techniques to problems in other (seemingly unrelated) branches of mathematics, such as the study of dynamical systems. In this talk I will give an introduction to descriptive combinatorics and discuss some recent progress concerning a particular family of combinatorial tools---the probabilistic method---and its applications in the descriptive setting.

Quasiperiodic Schrodinger operators: nonperturbative analysis of small denominators, universal self-similarity, and critical phenomena.

Series
Job Candidate Talk
Time
Tuesday, February 11, 2020 - 11:00 for 1 hour (actually 50 minutes)
Location
TBA
Speaker
Svetlana JitomirskayaUCI

We will give a brief introduction to the spectral theory of ergodic operators. Then we discuss several remarkable spectral phenomena present in the class of quasiperiodic operators, as well as the nonperturbative approach to small denominator problems that has been behind much of the related progress.  In particular, we will talk about the almost Mathieu (aka Harper's) operator - a model heavily studied in physics literature and linked to several Nobel prizes (in addition to one Fields medal). We will describe several results on this model that resolve some long-standing conjectures.

Pages