- Series
- ACO Student Seminar
- Time
- Friday, November 4, 2016 - 1:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Aurko Roy – Georgia Tech – https://sites.google.com/site/royaurko/
- Organizer
- Marcel Celaya

We study the cost function for hierarchical clusterings introduced by Dasgupta where hierarchies are treated as first-class objects rather than deriving their cost from projections into flat clusters. It was also shown that a top-down algorithm returns a hierarchical clustering of cost at most O (α_n log n) times the cost of the optimal hierarchical clustering, where α_n is the approximation ratio of the Sparsest Cut subroutine used. Thus using the best known approximation algorithm for Sparsest Cut due to Arora-Rao-Vazirani, the top down algorithm returns a hierarchical clustering of cost at most O(log^{3/2} n) times the cost of the optimal solution. We improve this by giving an O(log n)- approximation algorithm for this problem. Our main technical ingredients are a combinatorial characterization of ultrametrics induced by this cost function, deriving an Integer Linear Programming (ILP) formulation for this family of ultrametrics, and showing how to iteratively round an LP relaxation of this formulation by using the idea of sphere growing which has been extensively used in the context of graph partitioning. We also prove that our algorithm returns an O(log n)-approximate hierarchical clustering for a generalization of this cost function also studied in Dasgupta. This joint work with Sebastian Pokutta is to appear in NIPS 2016 (oral presentation).