- Series
- ACO Student Seminar
- Time
- Friday, January 26, 2018 - 1:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- David Hemmi – CS, Monash University – david.hemmi@monash.edu – http://davidhemmi.com/
- Organizer
- He Guo
Stochastic
programming is concerned with decision making under uncertainty,
seeking an optimal policy with respect to a set of possible future
scenarios.
While the value of Stochastic Programming is obvious to many
practitioners, in reality uncertainty in decision making is oftentimes
neglected.
For
deterministic optimisation problems, a coherent chain of modelling and
solving exists. Employing standard modelling languages and solvers for
stochastic
programs is however difficult. First, they have (with exceptions) no
native support to formulate Stochastic Programs. Secondly solving
stochastic programs with standard solvers (e.g. MIP solvers)
is often computationally intractable.
David
will be talking about his research that aims to make Stochastic
Programming more accessible. First, he will be talking about modelling
deterministic
and stochastic programs in the Constraint Programming language MiniZinc - a modelling paradigm that retains the structure of a problem much more strongly than MIP formulations. Secondly,
he will be talking about decomposition algorithms he has been working on to solve combinatorial Stochastic Programs.