- Series
- ACO Student Seminar
- Time
- Thursday, May 9, 2019 - 11:00am for 1 hour (actually 50 minutes)
- Location
- ISyE Main 228
- Speaker
- Evdokia Nikolova – ECE, UT Austin – Nikolova@austin.utexas.edu – https://users.ece.utexas.edu/~nikolova/
- Organizer
- He Guo
In network routing users often tradeoff different objectives in selecting their best route. An example is transportation networks, where due to uncertainty of travel times, drivers may tradeoff the average travel time versus the variance of a route. Or they might tradeoff time and cost, such as the cost paid in tolls.
We wish to understand the effect of two conflicting criteria in route selection, by studying the resulting traffic assignment (equilibrium) in the network. We investigate two perspectives of this topic: (1) How does the equilibrium cost of a risk-averse population compare to that of a risk-neutral population? (i.e., how much longer do we spend in traffic due to being risk-averse) (2) How does the equilibrium cost of a heterogeneous population compare to that of a comparable homogeneous user population?
We provide characterizations to both questions above.
Based on joint work with Richard Cole, Thanasis Lianeas and Nicolas Stier-Moses.
At the end I will mention current work of my research group on algorithms and mechanism design for power systems.
Biography: Evdokia Nikolova is an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Texas at Austin, where she is a member of the Wireless Networking & Communications Group. Previously she was an Assistant Professor in Computer Science and Engineering at Texas A&M University. She graduated with a BA in Applied Mathematics with Economics from Harvard University, MS in Mathematics from Cambridge University, U.K. and Ph.D. in Computer Science from MIT.
Nikolova's research aims to improve the design and efficiency of complex systems (such as networks and electronic markets), by integrating stochastic, dynamic and economic analysis. Her recent work examines how human risk aversion transforms traditional computational models and solutions. One of her algorithms has been adapted in the MIT CarTel project for traffic-aware routing. She currently focuses on developing algorithms for risk mitigation in networks, with applications to transportation and energy. She is a recipient of an NSF CAREER award and a Google Faculty Research Award. Her research group has been recognized with a best student paper award and a best paper award runner-up. She currently serves on the editorial board of the journal Mathematics of Operations Research.