On the Approximability of Budgeted Allocations and Improved Lower Bounds for Submodular Welfare Maximization and GAP

Series
ACO Student Seminar
Time
Wednesday, November 12, 2008 - 1:30pm for 2 hours
Location
Skiles 269
Speaker
Gagan Goel – ACO Computer Science, Georgia Tech
Organizer
Annette Rohrs
We consider the following Maximum Budgeted Allocation(MBA) problem: Given a set of m indivisible items and n agents; each agent i is willing to pay b_ij amount of money on item j, and in addition he species the maximum amount (budget of B_i) he is willing to pay in total over all the items he receives. Goal is to allocate items to agents so as to maximize the total payment received from all the agents. The problem naturally arises as auctioneer revenue maximization in first price budget-constrained Auctions (For e.g. auctioning of TV/Radio ads by Google). Our main results are: 1) We give a 3/4-approximation algorithm for MBA improving upon the previous best of 0.632 [Anelman-Mansour, 04]. Our factor matches the integrality gap of the LP used by the previous results. 2) We prove it is NP-hard to approximate MBA to any factor better than 15/16, previously only NP-hardness was known. Our result also implies NP-hardness of approximating maximum submodular welfare with demand oracle to a factor better than 15/16, improving upon the best known hardness of 275/276 [Feige-Vondrak, 07]. Our hardness techniques can be modified to prove that it is NP-hard to approximate the Generalized Assignment Problem (GAP) to any factor better than 10/11. This improves upon the 422/423 hardness of [Chekuri-Kumar, 04]. We use iterative rounding on a natural LP relaxation of MBA to obtain the 3/4-approximation. Recently iterative rounding has achieved considerable success in designing approximation algorithms. However, these successes have been limited to minimization problems, and as per our knowledge, this work is the first iterative rounding based approximation algorithm for a natural maximization problem. We also give a (3/4 - \epsilon)-factor algorithm based on the primal-dual schema which runs in O(nm) time, for any constant \epsilon > 0. In this talk, I will present the iterative rounding based algorithm, show the hardness reductions, and put forward some directions which can help in solving the natural open question of closing the approximation gap. Joint work with Deeparnab Chakrabarty.