A Stochastic Approach to Shortcut Bridging in Programmable Matter

Series
ACO Student Seminar
Time
Friday, October 6, 2017 - 1:05pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josh Daymude – Arizona State University/GaTech theory lab – joshdaymude@gmail.com
Organizer
He Guo
In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider stochastic, distributed, local, asynchronous algorithms for 'shortcut bridging', in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eticon have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency tradeoff using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being 'shortcut' similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work presents a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of a stochastic algorithm for compression. This is joint work between myself/my professor Andrea Richa at ASU and Sarah Cannon and Prof. Dana Randall here at GaTech.