- Series
- ACO Student Seminar
- Time
- Friday, October 6, 2017 - 1:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Josh Daymude – Arizona State University/GaTech theory lab – joshdaymude@gmail.com
- Organizer
- He Guo
In a self-organizing particle system, an abstraction of programmable
matter, simple computational elements called particles with limited
memory and communication self-organize to solve system-wide problems of
movement, coordination, and configuration.
In this paper, we consider stochastic, distributed, local, asynchronous
algorithms for 'shortcut bridging', in which particles self-assemble
bridges over gaps that simultaneously balance minimizing the length and
cost of the bridge. Army ants of the genus Eticon
have been observed exhibiting a similar behavior in their foraging
trails, dynamically adjusting their bridges to satisfy an efficiency
tradeoff using local interactions. Using techniques from Markov chain
analysis, we rigorously analyze our algorithm, show
it achieves a near-optimal balance between the competing factors of path
length and bridge cost, and prove that it exhibits a dependence on the
angle of the gap being 'shortcut' similar to that of the ant bridges. We
also present simulation results that qualitatively
compare our algorithm with the army ant bridging behavior. Our work
presents a plausible explanation of how convergence to globally optimal
configurations can be achieved via local interactions by simple
organisms (e.g., ants) with some limited computational
power and access to random bits. The proposed algorithm demonstrates the
robustness of the stochastic approach to algorithms for programmable
matter, as it is a surprisingly simple extension of a stochastic
algorithm for compression.
This is joint work between myself/my professor Andrea Richa at ASU and Sarah Cannon and Prof. Dana Randall here at GaTech.