Travel Behavior Modeling Using Machine Learning

Series
ACO Student Seminar
Time
Friday, February 8, 2019 - 1:05pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Xilei Zhao – ISyE, Georgia Tech – xilei.zhao@isye.gatech.eduhttps://sites.google.com/site/drxileizhao/home
Organizer
He Guo

The popularity of machine learning is increasingly growing in transportation, with applications ranging from traffic engineering to travel demand forecasting and pavement material modeling, to name just a few. Researchers often find that machine learning achieves higher predictive accuracy compared to traditional methods. However, many machine-learning methods are often viewed as “black-box” models, lacking interpretability for decision making. As a result, increased attention is being devoted to the interpretability of machine-learning results.

In this talk, I introduce the application of machine learning to study travel behavior, covering both mode prediction and behavioral interpretation. I first discuss the key differences between machine learning and logit models in modeling travel mode choice, focusing on model development, evaluation, and interpretation. Next, I apply the existing machine-learning interpretation tools and also propose two new model-agnostic interpretation tools to examine behavioral heterogeneity. Lastly, I show the potential of using machine learning as an exploratory tool to tune the utility functions of logit models.

I illustrate these ideas by examining stated-preference travel survey data for a new mobility-on-demand transit system that integrates fixed-route buses and on-demand shuttles. The results show that the best-performing machine-learning classifier results in higher predictive accuracy than logit models as well as comparable behavioral outputs. In addition, results obtained from model-agnostic interpretation tools show that certain machine-learning models (e.g. boosting trees) can readily account for individual heterogeneity and generate valuable behavioral insights on different population segments. Moreover, I show that interpretable machine learning can be applied to tune the utility functions of logit models (e.g. specifying nonlinearities) and to enhance their model performance. In turn, these findings can be used to inform the design of new mobility services and transportation policies.