Clusters and semistable models of hyperelliptic curves

Algebra Seminar
Tuesday, November 9, 2021 - 10:00am for 1 hour (actually 50 minutes)
Skiles 006
Jeffrey Yelton – Emory University –
Ashley K. Wheeler

For every hyperelliptic curve $C$ given by an equation of the form $y^2 = f(x)$ over a discretely-valued field of mixed characteristic $(0, p)$, there exists (after possibly extending the ground field) a model of $C$ which is semistable -- that is, a model whose special fiber (i.e. the reduction over the residue field) consists of reduced components and has at worst very mild singularities.  When $p$ is not $2$, the structure of such a special fiber is determined entirely by the distances (under the discrete valuation) between the roots of $f$, which we call the cluster data associated to $f$.  When $p = 2$, however, the cluster data no longer tell the whole story about the components of the special fiber of a semistable model of $C$, and constructing a semistable model becomes much more complicated.  I will give an overview of how to construct "nice" semistable models for hyperelliptic curves over residue characteristic not $2$ and then describe recent results (from joint work with Leonardo Fiore) on semistable models in the residue characteristic $2$ situation.