Tropical K_4 curves

Series
Algebra Seminar
Time
Wednesday, September 24, 2014 - 3:05pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Melody Chan – Harvard University
Organizer
Matt Baker
This is joint work with Pakwut Jiradilok. Let X be a smooth, proper curve of genus 3 over a complete and algebraically closed nonarchimedean field. We say X is a K_4-curve if the nonarchimedean skeleton G of X is a metric K_4, i.e. a complete graph on 4 vertices.We prove that X is a K_4-curve if and only if X has an embedding in p^2 whose tropicalization has a strong deformation retract to a metric K_4. We then use such an embedding to show that the 28 odd theta characteristics of X are sent to the seven odd theta characteristics of g in seven groups of four. We give an example of the 28 bitangents of a honeycomb plane quartic, computed over the field C{{t}}, which shows that in general the 4 bitangents in a given group need not have the same tropicalizations.