- Series
- Algebra Seminar
- Time
- Monday, November 14, 2016 - 3:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Peter Olver – University of Minnesota – http://www.math.umn.edu/~olver/
- Organizer
- Anton Leykin
In this talk, I will refine the concept of the symmetry group of a
geometric object through its symmetry groupoid, which incorporates both
global and local symmetries in a common framework. The symmetry
groupoid is related to the weighted differential invariant signature of a
submanifold, that is introduced to capture its fine grain equivalence
and symmetry properties. The groupoid/signature approach will be
connected to recent developments in signature-based recognition and
symmetry detection of objects in digital images, including jigsaw puzzle
assembly.