Anisotropic Structures and Sparse Regularization of Inverse Problems

Series
Analysis Seminar
Time
Friday, September 30, 2016 - 2:05pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Gitta Kutyniok – Technical University of Berlin – kutyniok@math.tu-berlin.de
Organizer
Shahaf Nitzan

Please Note: Note the unusual time.

Many important problem classes are governed by anisotropic structures such as singularities concentrated on lower dimensional embedded manifolds, for instance, edges in images or shear layers in solutions of transport dominated equations. While the ability to reliably capture and sparsely represent anisotropic features for regularization of inverse problems is obviously the more important the higher the number of spatial variables is, principal difficulties arise already in two spatial dimensions. Since it was shown that the well-known (isotropic) wavelet systems are not capable of efficiently approximating such anisotropic features, the need arose to introduce appropriate anisotropic representation systems. Among various suggestions, shearlets are the most widely used today. Main reasons for this are their optimal sparse approximation properties within a model situation in combination with their unified treatment of the continuum and digital realm, leading to faithful implementations. In this talk, we will first provide an introduction to sparse regularization of inverse problems, followed by an introduction to the anisotropic representation system of shearlets and presenting the main theoretical results. We will then analyze the effectiveness of using shearlets for sparse regularization of exemplary inverse problems such as recovery of missing data and magnetic resonance imaging (MRI) both theoretically and numerically.