Maximal Bounds on Cartesian Powers of Finite Graphs

Analysis Seminar
Wednesday, March 11, 2015 - 2:05pm for 1 hour (actually 50 minutes)
Skiles 005
Jordan Greenblat – UCLA
Michael Lacey
In the course of their work on the Unique Games Conjecture, Harrow, Kolla, and Schulman proved that the spherical maximal averaging operator on the hypercube satisfies an L^2 bound independent of dimension, published in 2013. Later, Krause extended the bound to all L^p with p > 1 and, together with Kolla, we extended the dimension-free bounds to arbitrary finite cliques. I will discuss the dimension-independence proofs for clique powers/hypercubes, focusing on spectral and operator semigroup theory. Finally, I will demonstrate examples of graphs whose Cartesian powers' maximal bounds behave poorly and present the current state and future directions of the project of identifying analogous asymptotics from a graph's basic structure.