The HRT Conjecture for single perturbations of confi gurations

Series
Analysis Seminar
Time
Wednesday, April 20, 2022 - 2:00pm for 1 hour (actually 50 minutes)
Location
Klaus 1447
Speaker
Kasso Okoudjou – Tufts University – Kasso.Okoudjou@tufts.edu
Organizer
Benjamin Jaye

 In 1996, C.~Heil, J.~Ramanatha, and P.~Topiwala conjectured that the (finite) set $\mathcal{G}(g, \Lambda)=\{e^{2\pi i b_k \cdot}g(\cdot - a_k)\}_{k=1}^N$ is linearly independent for any  non-zero square integrable function $g$ and  subset $\Lambda=\{(a_k, b_k)\}_{k=1}^N \subset \mathbb{R}^2.$ This problem is now known as the HRT Conjecture, and is still largely unresolved. 

 

In this talk,  I will then introduce an inductive approach to investigate the conjecture, by attempting to answer the following question. Suppose the HRT conjecture is true for a function $g$ and a fixed set of $N$ points $\Lambda=\{(a_k, b_k)\}_{k=1}^N \subset \mathbb{R}^2.$ For what other point $(a, b)\in \mathbb{R}^2\setminus \Lambda$ will the HRT remain true for the same function $g$ and the new set of $N+1$ points $\Lambda'=\Lambda \cup \{(a, b)\}$?  I will report on a recent joint work with V.~Oussa in which we use this approach to prove the conjecture when the initial configuration  $\Lambda=\{(a_k, b_k)\}_{k=1}^N $  is either a subset of the unit lattice $\mathbb{Z}^2$ or a subset of a line $L$.