Dynamical sampling

Analysis Seminar
Wednesday, October 17, 2018 - 1:55pm for 1 hour (actually 50 minutes)
Skiles 005
Longxiu Huang – Vanderbilt University
Shahaf Nitzan
Dynamical sampling is a new area in sampling theory that deals with signals that evolve over time under the action of a linear operator. There are lots of studies on various aspects of the dynamical sampling problem. However, they all focus on uniform discrete time-sets $\mathcal T\subset\{0,1,2,\ldots, \}$. In our study, we concentrate on the case $\mathcal T=[0,L]$. The goal of the present work is to study the frame property of the systems $\{A^tg:g\in\mathcal G, t\in[0,L] \}$. To this end, we also characterize the completeness and Besselness properties of these systems.