- Series
- Analysis Seminar
- Time
- Wednesday, October 18, 2023 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- TBA
- Speaker
- Masaharu Kobayashi – Hokkaido University – m-kobayashi@math.sci.hokudai.ac.jp – https://www2.sci.hokudai.ac.jp/dept/math/en/researcher/kobayashi-masaharu-2
- Organizer
- Christopher Heil
Let ${\mathcal F}L^q_s ({\mathbf R}^2)$ denote the set of all tempered distributions $f \in {\mathcal S}^\prime ({\mathbf R}^2)$ such that the norm $ \| f \|_{{\mathcal F}L^q_s} = (\int_{{\mathbf R}^2}\, ( |{\mathcal F}[f](\xi)| \,( 1+ |\xi| )^s )^q\, d \xi )^{ \frac{1}{q} }$ is finite, where ${\mathcal F}[f]$ denotes the Fourier transform of $f$. We investigate the spectral synthesis for the unit circle $S^1 \subset {\mathbf R}^2$ in ${\mathcal F}L^q_s ({\mathbf R}^2)$ with $1\frac{2}{q^\prime}$, where $q^\prime$ denotes the conjugate exponent of $q$. This is joint work with Prof. Sato (Yamagata University).