- Series
- Analysis Seminar
- Time
- Wednesday, November 11, 2009 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 269
- Speaker
- Sergiy Borodachov – Towson University
- Organizer
- Plamen Iliev
We consider finite systems of contractive homeomorphisms of a complete metric space, which are non-redundanton every level. In general, this condition is weaker than the strong open set condition and is not equivalent to the weak separation property. We show that the set of N-tuples of contractive homeomorphisms, which satisfy this separation condition is a G_delta set in the topology of pointwise convergence of every component mapping with an additional requirement that the supremum of contraction coefficients of mappings in the sequence be strictly less than one.We also give several sufficient conditions for this separation property. For every fixed N-tuple of dXd invertible contraction matrices from a certain class, we obtain density results for vectors of fixed points, which defineN-tuples of affine contraction mappings having this separation property. Joint work with Tim Bedford (University of Strathclyde) and Jeff Geronimo (Georgia Tech).