- Series
- Analysis Seminar
- Time
- Wednesday, March 29, 2017 - 2:05am for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Shahaf Nitzan – Georgia Tech
- Organizer
- Shahaf Nitzan
A Gaussian stationary sequence is a random function f: Z --> R, for
which any vector (f(x_1), ..., f(x_n)) has a centered multi-normal
distribution and whose distribution is invariant to shifts. Persistence
is the event of such a random function to remain positive
on a long interval [0,N]. Estimating the probability of this event has important implications in
engineering , physics, and probability. However, though active efforts
to understand persistence were made in the last 50 years, until
recently, only specific examples and very general bounds
were obtained. In the last few years, a new point of view simplifies
the study of persistence, namely - relating it to the spectral measure
of the process.
In this talk we will use this point of view to study the persistence in cases where the
spectral measure is 'small' or 'big' near zero.
This talk is based on Joint work with Naomi Feldheim and Ohad Feldheim.