Modeling synthetic ciliated surfaces

Applied and Computational Mathematics Seminar
Monday, April 11, 2011 - 2:00pm for 1 hour (actually 50 minutes)
Skiles 005
Alex Alexeev – Georgia Tech Mechanical Engineering
Silas Alben
Biomimetic synthetic cilia can be effectively utilized for regulating microscale transport processes at interfaces. Using computer simulations, we examine how polymeric cilia can be harnessed to control the motion of microscopic particles suspended in a viscous fluid. The cilia are modeled as deformable, elastic filaments and our simulations capture the complex fluid-structure interactions among these filaments, channel walls and surrounding solution. We show that non-motile cilia that are tilted with respect to the surface can hydrodynamically direct solid particles towards channel walls, thereby, inducing their rapid deposition. When synthetic cilia are actuated by a sinusoidal force that is applied at the free ends, the beating cilia can either drive particles downwards toward the substrate or expelled particles into the fluid above the actuated cilial layer. This dynamic behavior can be regulated by changing the driving frequency. The findings uncover new routes for controlling the deposition of microscopic particles in microfluidic devices.