An Adaptive Sampling Approach for Surrogate Modeling of Expensive Computer Experiments

Applied and Computational Mathematics Seminar
Monday, February 4, 2019 - 1:55pm for 1 hour (actually 50 minutes)
Skiles 005
Ashwin Renganathan – GT AE –
Sung Ha Kang

In the design of complex engineering systems like aircraft/rotorcraft/spacecraft, computer experiments offer a cheaper alternative to physical experiments due to high-fidelity(HF) models. However, such models are still not cheap enough for application to Global Optimization(GO) and Uncertainty Quantification(UQ) to find the best possible design alternative. In such cases, surrogate models of HF models become necessary. The construction of surrogate models requires an offline database of the system response generated by running the expensive model several times. In general, the training sample size and distribution for a given problem is unknown apriori and can be over/under predicted, which leads to wastage of resources and poor decision-making. An adaptive model building approach eliminates this problem by sequentially sampling points based on information gained in the previous step. However, an approach that works for highly non-stationary response is still lacking in the literature. Here, we use Gaussian Process(GP) models as surrogate model. We employ a novel process-convolution approach to generate parameterized non-stationary.

GPs that offer control on the process smoothness. We show that our approach outperforms existing methods, particularly for responses that have localized non-smoothness. This leads to better performance in terms of GO, UQ and mean-squared-prediction-errors for a given budget of HF function calls.