Stochastic-Statistical Modeling of Criminal Behavior

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 19, 2019 - 1:50pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Chuntian Wang – The University of Alabama – cwang27@ua.edu
Organizer
Martin Short

Residential crime is one of the toughest issues in modern society. A quantitative, informative, and applicable model of criminal behavior is needed to assist law enforcement. We have made progress to the pioneering statistical agent-based model of residential burglary (Short et al., Math. Models Methods Appl., 2008) in two ways. (1) In one space dimension, we assume that the movement patterns of the criminals involve truncated Lévy distributions for the jump length, other than classical random walks (Short et al., Math. Models Methods Appl., 2008) or Lévy flights without truncation (Chaturapruek et al., SIAM J. Appl. Math, 2013). This is the first time that truncated Lévy flights have been applied in crime modeling. Furthermore (2), in two space dimensions, we used the Poisson clocks to govern the time steps of the evolution of the model, rather than a discrete time Markov chain with deterministic time increments used in the previous works. Poisson clocks are particularly suitable to model the times at which arrivals enter a system. Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.