- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, November 30, 2009 - 12:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 269
- Speaker
- David Hu – Georgia Tech ME
- Organizer
- Silas Alben
How do animals move without legs? In this experimental and theoretical
study, we investigate the slithering of snakes on flat surfaces.
Previous studies of slithering have rested on the assumption that
snakes slither by pushing laterally against rocks and branches. In this
combined experimental and theoretical study, we develop a model for
slithering locomotion by observing snake motion kinematics and
experimentally measuring the friction coefficients of snake skin. Our
predictions of body speed show good agreement with observations,
demonstrating that snake propulsion on flat ground, and possibly in
general, relies critically on the frictional anisotropy of their
scales. We also highlight the importance of the snake's dynamically
redistributing its weight during locomotion in order to improve speed
and efficiency. We conclude with an overview of our experimental
observations of other methods of propulsion by snakes, including
sidewinding and a unidirectional accordion-like mode.