- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, February 15, 2010 - 1:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 255
- Speaker
- Lek-Heng Lim – UC Berkeley
- Organizer
- Haomin Zhou
Numerical linear algebra is often regarded as a workhorse of scientific and
engineering computing. Computational problems arising from optimization,
partial differential equation, statistical estimation, etc, are usually reduced
to one or more standard problems involving matrices: linear systems, least
squares, eigenvectors/singular vectors, low-rank approximation, matrix
nearness, etc. The idea of developing numerical algorithms for multilinear
algebra is naturally appealing -- if similar problems for tensors of higher
order (represented as hypermatrices) may be solved effectively, then one would
have substantially enlarged the arsenal of fundamental tools in numerical
computations.
We will see that higher order tensors are indeed ubiquitous in applications;
for multivariate or non-Gaussian phenomena, they are usually inevitable.
However the path from linear to multilinear is not straightforward. We will
discuss the theoretical and computational difficulties as well as ways to avoid
these, drawing insights from a variety of subjects ranging from algebraic
geometry to compressed sensing. We will illustrate the utility of such
techniques with our work in cancer metabolomics, EEG and fMRI neuroimaging,
financial modeling, and multiarray signal processing.