How to Break the Curse of Dimensionality

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 31, 2022 - 2:00pm for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/457724603/4379
Speaker
Ming-Jun Lai – University of Georgia
Organizer
Haomin Zhou

We first review the problem of the curse of dimensionality when approximating multi-dimensional functions. Several approximation results from Barron, Petrushev,  Bach, and etc . will be explained. 

Then we present two approaches to break the curse of the dimensionality: one is based on probability approach explained in Barron, 1993 and the other one is based on a deterministic approach using the Kolmogorov superposition theorem.   As the Kolmogorov superposition theorem has been used to explain the approximation of neural network computation, I will use it to explain why the deep learning algorithm works for image classification.
In addition, I will introduce the neural network approximation based on higher order ReLU functions to explain the powerful approximation of multivariate functions using  deep learning algorithms with  multiple layers.