Near-Best Adaptive Approximation on Conforming Simplicial Partitions

Applied and Computational Mathematics Seminar
Monday, April 22, 2019 - 1:55pm for 1 hour (actually 50 minutes)
Skiles 005
Peter Binev – University of South Carolina –
Wenjing Liao

The talk presents an extension for high dimensions of an idea from a recent result concerning near optimal adaptive finite element methods (AFEM). The usual adaptive strategy for finding conforming partitions in AFEM is ”mark → subdivide → complete”. In this strategy any element can be marked for subdivision but since the resulting partition often contains hanging nodes, additional elements have to be subdivided in the completion step to get a conforming partition. This process is very well understood for triangulations received via newest vertex bisection procedure. In particular, it is proven that the number of elements in the final partition is limited by constant times the number of marked cells. This motivated us [B., Fierro, Veeser, in preparation] to design a marking procedure that is limited only to cells of the partition whose subdivision will result in a conforming partition and therefore no completion step is necessary. We also proved that this procedure is near best in terms of both error of approximation and complexity. This result is formulated in terms of tree approximations and opens the possibility to design similar algorithms in high dimensions using sparse occupancy trees introduced in [B., Dahmen, Lamby, 2011]. The talk describes the framework of approximating high dimensional data using conforming sparse occupancy trees.