- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, April 24, 2017 - 2:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Prof. George Mohler – IUPUI Computer Science
- Organizer
- Martin Short
In this talk we focus on classification problems where noisy sensor
measurements collected over a time window must be classified into one or
more categories. For example, mobile phone health and insurance apps
take as input time series from the accelerometer, gyroscope and GPS
radio of the phone and output predictions as to whether the user is
still, walking, running, biking, driving etc. Standard approaches to
this problem consist of first engineering features from statistics of
the data (or a transform) over a window and then training a
discriminative classifier. For two applications we show how these
features can instead be learned in an end-to-end modeling framework with
the advantages of increased accuracy and decreased modeling and
training time. The first application is reconstructing unobserved neural connections from Calcium fluorescence time series and we introduce a novel convolutional neural network architecture
with an inverse covariance layer to solve the problem. The second
application is driving detection on mobile phones with applications to
car telematics and insurance.