- Series
- CDSNS Colloquium
- Time
- Wednesday, May 10, 2017 - 1:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Marc Jorba-Cusco – Universitat de Barcelona
- Organizer
- Rafael de la Llave
Consider an affine skew product of the complex plane. \begin{equation}\begin{cases} \omega \mapsto \theta+\omega,\\ z \mapsto =a(\theta \mu)z+c, \end{cases}\end{equation}where $\theta \in \mathbb{T}$, $z\in \mathbb{C}$, $\omega$ is Diophantine, and $\mu$ and $c$ are real parameters. In this talk we show that, under suitable conditions, the affine skew product has an invariant curve that undergoes a fractalization process when $\mu$ goes to a critical value. The main hypothesis needed is the lack of reducibility of the system. A characterization of reducibility of linear skew-products on the complex plane is provided. We also include a linear and topological classification of these systems. Join work with: N\'uria Fagella, \`Angel Jorba and Joan Carles Tatjer