- Series
- Combinatorics Seminar
- Time
- Wednesday, May 22, 2013 - 3:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Amanda Streib – National Institute of Standards and Technology
- Organizer
- Robin Thomas
Studying the ferromagnetic Ising model with zero applied field reduces
to sampling even
subgraphs X of G with probability proportional to
\lambda^{|E(X)|}. In this paper we present a class of Markov chains
for sampling even subgraphs, which contains the classical
single-site dynamics M_G and generalizes it to nonlocal
chains. The idea is based on the fact that even subgraphs form a
vector space over F_2
generated by a cycle basis of G. Given any cycle basis C of a
graph G, we define a Markov chain M(C) whose transitions are
defined by symmetric difference with an element of C.
We characterize cycle bases into two types: long and short.
We show that for any long cycle basis C of any graph G, M(C)
requires exponential time to mix when \lambda is small.
All fundamental cycle bases of the grid in 2 and 3 dimensions
are of this type. Moreover, on the 2-dimensional grid, short bases
appear to behave like M_G. In particular, if G has
periodic boundary conditions, all short bases yield Markov chains that
require exponential time to mix for small enough \lambda. This is
joint work with Isabel Beichl, Noah Streib, and Francis Sullivan.