- Series
- Combinatorics Seminar
- Time
- Monday, September 12, 2016 - 4:05pm for 1 hour (actually 50 minutes)
- Location
- Skiles 169
- Speaker
- Anastasios Sidiropoulos – The Ohio State University – http://web.cse.ohio-state.edu/~tasos/
- Organizer
- Esther Ezra
The computational
complexity of many geometric problems depends on the dimension of the
input space. We study algorithmic problems on spaces of low fractal
dimension. There are several well-studied notions of fractal dimension
for sets and measures in Euclidean
space. We consider a definition of fractal dimension for finite metric
spaces, which agrees with standard notions used to empirically estimate
the fractal dimension of various sets.
When the fractal dimension of the input is lower than the ambient
dimension, we obtain faster algorithms for a plethora of classical
problems, including TSP, Independent Set, R-Cover, and R-Packing.
Interestingly, the dependence of the performance of these
algorithms on the fractal dimension closely resembles the currently
best-known dependence on the standard Euclidean dimension. For example,
our algorithm for TSP has running time 2^O(n^(1-1/delta) * log(n)), on
sets of fractal dimension delta; in comparison,
the best-known algorithm for sets in d-dimensional Euclidean space has
running time 2^O(n^(1-1/d)).