On large multipartite subgraphs of H-free graphs

Series
Combinatorics Seminar
Time
Thursday, March 29, 2018 - 1:30pm for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jan Volec – McGill – http://honza.ucw.cz/
Organizer
Lutz Warnke
A long-standing conjecture of Erdős states that any n-vertex triangle-free graph can be made bipartite by deleting at most n^2/25 edges. In this talk, we study how many edges need to be removed from an H-free graph for a general graph H. By generalizing a result of Sudakov for 4-colorable graphs H, we show that if H is 6-colorable then G can be made bipartite by deleting at most 4n^2/25+O(n) edges. In the case of H=K_6, we actually prove the exact bound 4n^2/25 and show that this amount is needed only in the case G is a complete 5-partite graph with balanced parts. As one of the steps in the proof, we use a strengthening of a result of Füredi on stable version of Turán's theorem. This is a joint work with P. Hu, B. Lidický, T. Martins-Lopez and S. Norin.