Topics in percolation and sequence analysis

Dissertation Defense
Friday, June 22, 2018 - 11:00
1.5 hours (actually 80 minutes)
Skiles 005
Georgia Tech
We will present three results in percolation and sequence analysis. In the first part, we will briefly show an exponential concentration inequality for transversal fluctuation of directed last passage site percolation. In the the second part, we will dive into the power lower bounds for all the r-th central moments ($r\ge1$) of the last passage time of directed site perolcation on a thin box. In the last part, we will partially answer a conjecture raised by Bukh and Zhou that the minimal expected length of the longest common subsequences between two i.i.d. random permutations with arbitrary distribution on the symmetric group is obtained when the distribution is uniform and thus lower bounded by $c\sqrt{n}$ by showing that some distribution can be iteratively constructed such that it gives strictly smaller expectation than uniform distribution and a quick cubic root of $n$ lower bound will also be shown.