- Series
- Dissertation Defense
- Time
- Monday, March 9, 2020 - 11:05am for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Justin Lanier – Georgia Tech – jlanier8@gatech.edu – http://people.math.gatech.edu/~jlanier8/
- Organizer
- Justin Lanier

A surface of genus $g$ has many symmetries. These form the surfaceâ€™s mapping class group $Mod(S_g)$, which is finitely generated. The most commonly used generating sets for $Mod(S_g)$ are comprised of infinite order elements called Dehn twists; however, a number of authors have shown that torsion generating sets are also possible. For example, Brendle and Farb showed that $Mod(S_g)$ is generated by six involutions for $g \geq 3$. We will discuss our extension of these results to elements of arbitrary order: for $k > 5$ and $g$ sufficiently large, $Mod(S_g)$ is generated by three elements of order $k$. Generalizing this idea, in joint work with Margalit we showed that for $g \geq 3$ every nontrivial periodic element that is not a hyperelliptic involution normally generates $Mod(S_g)$. This result raises a question: does there exist an $N$, independent of $g$, so that if $f$ is a periodic normal generator of $Mod(S_g)$, then $Mod(S_g)$ is generated by $N$ conjugates of $f$? We show that in general there does not exist such an $N$, but that there does exist such a universal bound for the class of non-involution normal generators.