Contact geometric theory of Anosov flows in dimension three

Dissertation Defense
Wednesday, May 25, 2022 - 11:00am for 1.5 hours (actually 80 minutes)
Skiles 005
Surena Hozoori – Georgia Institute of Technology –
Surena Hozoori

Zoom link :

Since their introduction in the early 1960s, Anosov flows have defined an important class of dynamics, thanks to their many interesting chaotic features and rigidity properties. Moreover, their topological aspects have been deeply explored, in particular in low dimensions, thanks to the use of foliation theory in their study. Although the connection of Anosov flows to contact and symplectic geometry was noted in the mid 1990s by Mitsumatsu and Eliashberg-Thurston, such interplay has been left mostly unexplored. I will present some recent results on the contact and symplectic geometric aspects of Anosov flows in dimension 3, including in the presence of an invariant volume form, which is known to have grave consequences for the dynamics of these flows. Time permitting, the interplay of Anosov flows with Reeb dynamics, Liouville geometry and surgery theory will be briefly discussed as well.