Subdivisions of complete graphs

Series
Dissertation Defense
Time
Monday, April 10, 2017 - 3:00pm for 2 hours
Location
Skiles 006
Speaker
Yan Wang – Georgia Institute of Technology
Organizer
Yan Wang
A subdivision of a graph G, also known as a topological G and denoted by TG, is a graph obtained from G by replacing certain edges of G with internally vertex-disjoint paths. This dissertation has two parts. The first part studies a structural problem and the second part studies an extremal problem. In the first part of this dissertation, we focus on TK_5, or subdivisions of K_5. A well-known theorem of Kuratowski in 1932 states that a graph is planar if, and only if, it does not contain a subdivision of K_5 or K_{3,3}. Wagner proved in 1937 that if a graph other than K_5 does not contain any subdivision of K_{3,3} then it is planar or it admits a cut of size at most 2. Kelmans and, independently, Seymour conjectured in the 1970s that if a graph does not contain any subdivision of K_5 then it is planar or it admits a cut of size at most 4. In this dissertation, we give a proof of the Kelmans-Seymour conjecture. We also discuss several related results and problems. The second part of this dissertation concerns subdivisions of large cliques in C_4-free graphs. Mader conjectured that every C_4-free graph with average degree d contains TK_l with l = \Omega(d). Komlos and Szemeredi reduced the problem to expanders and proved Mader's conjecture for n-vertex expanders with average degree d < exp( (log n)^(1/8) ). In this dissertation, we show that Mader's conjecture is true for n-vertex expanders with average degree d < n^0.3, which improves Komlos and Szemeredi's quasi-polynomial bound to a polynomial bound. As a consequence, we show that every C_4-free graph with average degree d contains a TK_l with l = \Omega(d/(log d)^c) for any c > 3/2. We note that Mader's conjecture has been recently verified by Liu and Montgomery.