- Series
- Dissertation Defense
- Time
- Friday, June 10, 2022 - 11:00am for 1.5 hours (actually 80 minutes)
- Location
- Skiles 006 (hybrid)
- Speaker
- Youngho Yoo – Georgia Tech – yyoo41@gatech.edu
- Organizer
- Youngho Yoo
Erdos and Posa proved in 1965 that cycles satisfy an approximate packing-covering duality. Finding analogous approximate dualities for other families of graphs has since become a highly active area of research due in part to its algorithmic applications. In this thesis we investigate the Erdos-Posa property of various families of constrained cycles and paths by developing new structural tools for undirected group-labelled graphs.
Our first result is a refinement of the flat wall theorem of Robertson and Seymour to undirected group-labelled graphs. This structure theorem is then used to prove the Erdos-Posa property of A-paths of length 0 modulo p for a fixed odd prime p, answering a question of Bruhn and Ulmer. Further, we obtain a characterization of the abelian groups G and elements g for which A-paths of weight g satisfy the Erdos-Posa property. These results are from joint work with Robin Thomas.
We extend our structural tools to graphs labelled by multiple abelian groups and consider the Erdos-Posa property of cycles whose weights avoid a fixed finite subset in each group. We find three types of topological obstructions and show that they are the only obstructions to the Erdos-Posa property of such cycles. This is a far-reaching generalization of a theorem of Reed that Escher walls are the only obstructions to the Erdos-Posa property of odd cycles. Consequently, we obtain a characterization of the sets of allowable weights in this setting for which the Erdos-Posa property holds for such cycles, unifying a large number of results in this area into a general framework. As a special case, we characterize the integer pairs (L,M) for which cycles of length L mod M satisfy the Erdos-Posa property. This resolves a question of Dejter and Neumann-Lara from 1987. Further, our description of the obstructions allows us to obtain an analogous characterization of the Erdos-Posa property of cycles in graphs embeddable on a fixed compact orientable surface. This is joint work with Pascal Gollin, Kevin Hendrey, O-joung Kwon, and Sang-il Oum.
Zoom link: https://gatech.zoom.us/j/96860495360?pwd=cktMRVVqMDRtVnJsb3ZLRll1bFRJQT09