A classical Hamiltonian model for high harmonic generation

Series
Dynamical Systems Working Seminar
Time
Friday, February 24, 2017 - 3:05pm for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Simon Berman – School of Physics
Organizer
Jiaqi Yang
In a high harmonic generation (HHG) experiment, an intense laser pulse is sent through an atomic gas, and some of that light is converted to very high harmonics through the interaction with the gas. The spectrum of the emitted light has a particular, nearly universal shape. In this seminar, I will describe my efforts to derive a classical reduced Hamiltonian model to capture this phenomenon. Beginning with a parent Hamiltonian that yields the equations of motion for a large collection of atoms interacting self-consistently with the full electromagnetic field (Lorentz force law + Maxwell's equations), I will follow a sequence of reductions that lead to a reduced Hamiltonian which is computationally tractable yet should still retain the essential physics. I will conclude by pointing out some of the still-unresolved issues with the model, and if there's time I will discuss the results of some preliminary numerical simulations.