- Series
- Geometry Topology Seminar
- Time
- Monday, January 28, 2013 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Adam Knapp – Columbia University
- Organizer
- John Etnyre
Given any smooth manifold, there is a canonical symplectic structure on its cotangent bundle. A long standing idea of Arnol'd suggests that the symplectic topology of the cotangent bundle should contain a great deal of information about the smooth topology of its base. As a contrast, I show that when X is an open 4-manifold, this symplectic structure on T^*X does not depend on the choice of smooth structure on X. I will also discuss the particular cases of smooth structures on R^4 and once-punctured compact 4-manifolds.