- Series
- Geometry Topology Seminar
- Time
- Monday, November 28, 2011 - 2:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Doug LaFountain – Aarhus Universitet
- Organizer
- John Etnyre
For a genus g surface with s > 0 punctures and 2g+s > 2, decorated Teichmuller space (DTeich) is a trivial R_+^s-bundle over the usual Teichmuller space, where the fiber corresponds to families of horocycles peripheral to each puncture. As proved by R. Penner, DTeich admits a mapping class group-invariant cell decomposition, which then descends to a cell decomposition of Riemann's moduli space. In this talk we introduce a new cellular bordification of DTeich which is also MCG-invariant, namely the space of filtered screens. After an appropriate quotient, we obtain a cell decomposition for a new compactification of moduli space, which is shown to be homotopy equivalent to the Deligne-Mumford compactification. This work is joint with R. Penner.