- Series
- Graph Theory Seminar
- Time
- Tuesday, May 4, 2021 - 3:45pm for 1 hour (actually 50 minutes)
- Location
- https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
- Speaker
- Fan Wei – Princeton University – fanw@princeton.edu – https://sites.google.com/view/fan-wei/home
- Organizer
- Anton Bernshteyn

A graph $H$ is $k$-common if the number of monochromatic copies of $H$ in a $k$-edge-coloring of $K_n$ is asymptotically minimized by a random coloring. For every $k$, we construct a connected non-bipartite $k$-common graph. This resolves a problem raised by Jagger, Stovicek and Thomason. We also show that a graph $H$ is $k$-common for every $k$ if and only if $H$ is Sidorenko and that $H$ is locally $k$-common for every $k$ if and only if H is locally Sidorenko.