- Series
- Graph Theory Seminar
- Time
- Thursday, October 1, 2015 - 1:30pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Jie Ma – University of Science and Technology of China
- Organizer
- Xingxing Yu
There has been extensive research on cycle lengths in graphs with large
minimum degree. In this talk, we will present several new and tight results
in this area. Let G be a graph with minimum degree at least k+1. We
prove that if G is bipartite, then there are k cycles in G whose
lengths form an arithmetic progression with common difference two. For
general graph G, we show that G contains \lfloor k/2\rfloor cycles
with consecutive even lengths, and in addition, if G is 2-connected and
non-bipartite, then G contains \lfloor k/2\rfloor cycles with
consecutive odd lengths. Thomassen (1983) made two conjectures on cycle
lengths modulo a fixed integer k: (1) every graph with minimum degree at
least k+1 contains cycles of all even lengths modulo k; (2) every
2-connected non-bipartite graph with minimum degree at least $k+1$ contains
cycles of all lengths modulo k. These two conjectures, if true, are best
possible. Our results confirm both conjectures!
when k is even. And when k is odd, we show that minimum degree at
least $+4 suffices. Moreover, our results derive new upper bounds of the
chromatic number in terms of the longest sequence of cycles with
consecutive (even or odd) lengths. This is a joint work with Chun-Hung Liu.