Progress towards Nash-Williams' conjecture on triangle decompositions

Series
Graph Theory Seminar
Time
Tuesday, February 9, 2021 - 12:30pm for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Michelle Delcourt – Ryerson University – mdelcourt@ryerson.cahttps://www.ryerson.ca/graphs-group/group-members/michelle-delcourt/
Organizer
Anton Bernshteyn

Please Note: Note the unusual time!

Partitioning the edges of a graph into edge disjoint triangles forms a triangle decomposition of the graph. A famous conjecture by Nash-Williams from 1970 asserts that any sufficiently large, triangle divisible graph on $n$ vertices with minimum degree at least $0.75 n$ admits a triangle decomposition. In the light of recent results, the fractional version of this problem is of central importance. A fractional triangle decomposition is an assignment of non-negative weights to each triangle in a graph such that the sum of the weights along each edge is precisely one.

We show that for any graph on n vertices with minimum degree at least $0.827327 n$ admits a fractional triangle decomposition. Combined with results of Barber, Kühn, Lo, and Osthus, this implies that for every sufficiently large triangle divisible graph on $n$ vertices with minimum degree at least $0.82733 n$ admits a triangle decomposition. This is a significant improvement over the previous asymptotic result of Dross showing the existence of fractional triangle decompositions of sufficiently large graphs with minimum degree more than $0.9 n$. This is joint work with Luke Postle.