Planar graphs and planar posets

Series
Graph Theory Seminar
Time
Thursday, August 27, 2009 - 12:05pm for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
William T. Trotter – Math, GT
Organizer
Robin Thomas
Slightly modifying a quote of Paul Erdos: The problem for graphs we solve this week. The corresponding problem for posets will take longer. As one example, testing a graph to determine if it is planar is linear in the number of edges. Testing an order (Hasse) diagram to determine if it is planar is NP-complete. As a second example, it is NP-complete to determine whether a graph is a cover graph. With these remarks in mind, we present some results, mostly new but some classic, regarding posets with planar cover graphs and planar diagrams. The most recent result is that for every h, there is a constant c_h so that if P is a poset of height h and the cover graph of P is planar, then the dimension of P is at most c_h.